4.8 Article

Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface

期刊

ACTA BIOMATERIALIA
卷 5, 期 8, 页码 3215-3223

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2009.05.008

关键词

TiO2 nanotubes; Osteoblast; Cell adhesion; Cell elongation; Alkaline phosphatase activity

资金

  1. UC San Diego

向作者/读者索取更多资源

The titanium dioxide (TiO2) nanotube surface enables significantly accelerated osteoblast adhesion and exhibits strong bonding with bone. We prepared various sizes (30-100 nm diameter) of titanium dioxide (TiO2) nanotubes on titanium substrates by anodization and investigated the osteoblast cellular behavior in response to these different nanotube sizes. The unique and striking result of this study is that a change in osteoblast behavior is obtained in a relatively narrow range of nanotube dimensions, with small diameter (similar to 30 nm) nanotubes promoting the highest degree of osteoblast adhesion, while larger diameter (70-100 nm) nanotubes elicit a lower population of cells with extremely elongated cellular morphology and much higher alkaline phosphatase levels. Increased elongation of nuclei was also observed with larger diameter nanotubes. By controlling the nanotopography, large diameter nanotubes, in the similar to 100 min regime, induced extremely elongated cellular shapes, with an aspect ratio of 11:1, which resulted in substantially enhanced up-regulation of alkaline phosphatase activity, suggesting greater bone-forming ability than nanotubes with smaller diameters. Such nanotube structures, already being a strongly osseointegrating implant material, offer encouraging implications for the development and optimization of novel orthopedics-related treatments with precise control toward desired cell and bone growth behavior. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据