4.8 Article

Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model

期刊

ACTA BIOMATERIALIA
卷 5, 期 1, 页码 230-239

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2008.07.024

关键词

Angiogenesis; Hydrogels; Controlled delivery; Ischemia; Basic fibroblast growth factor

资金

  1. American Heart Association-Florida Puerto Rico [075522513]

向作者/读者索取更多资源

Peripheral artery disease and critical limb ischemia have become prevalent health risks in the United States due to an increasing elderly population and the prevalence of obesity and diabetes mellitus. Although highly invasive endarterectomy is the most popular method for treatment, angiogenic therapies based on growth factor administration are quickly becoming a popular alternative. Enzymatic degradation of these factors in vivo may be avoided by their incorporation in a delivery vehicle where the growth factor's release rate can be controlled by altering the vehicle's properties (i.e. cross-linking density, material selection, biodegradation, etc.). Herein, we report on the immobilization and controlled release of human recombinant basic fibroblast growth factor (FGF-2) and human recombinant granulocyte colony-stimulating factor (G-CSF) from ionic, gelatin-based hydrogel scaffolds to re-establish perfusion. and induce capillary outgrowth in a murine hindlimb ischemic model. In vitro studies showed that endothelial cell proliferation was highly depended on FGF-2, whereas G-CSF stimulated migration and formation of a tubular network. When FGF-2 and G-CSF were used in combination there was an 82% increase in endothelial branch point formation compared to control groups. Leg reperfusion was assessed with laser Doppler perfusion imaging, while capillary outgrowth in the ischemic leg was evaluated using CD31(+) and alpha-SMA immunostaining. The co-delivery of G-CSF (1000 ng ml(-1)) and FGF-2 (1000 ng ml(-1)) from the gelatin hydrogels resulted in a 3-fold increase in the perfusion levels and a 2-fold increase in capillary density and positive a-SMA vessels compared to the empty vehicle group. In conclusion, the co-delivery of FGF-2 and G-CSF was superior to bolus administration or the delivery of either factor alone in promoting reperfusion and mature vessel formation. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据