4.8 Article

Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: Characterization and in vivo evaluation

期刊

ACTA BIOMATERIALIA
卷 5, 期 5, 页码 1732-1741

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2009.01.014

关键词

Silicon; Hydroxyapatite; Porous titanium; Coating; Bioactivity

资金

  1. Institute of Metal Research (IMR)
  2. Chinese Academy of Sciences (CAS)
  3. Shenyang Science and Technology Institute [1062109-1-00]
  4. Heilongjiang Provincial Nature Science Fund [E2007-18]

向作者/读者索取更多资源

Porous titanium with a pore size of 150-600 mu m and a porosity of 67% was prepared by fiber sintering. The porous titanium had a complete three-dimensional (3D) interconnected structure and a high yield strength of 100 MPa. Si-substituted hydroxyapatite (Si-HA) was coated on the surface by a biomimetic process to improve the surface bioactivity. X-ray diffraction results showed that Si-HA coating was not well crystallized. New bone tissue was found in the uncoated porous titanium after 2 weeks of implantation and a significant increase (p < 0.05) in the bone ingrowth rate (BIR) was found after 4 weeks of implantation, indicating the good osteoconductivity of the porous structure. The HA-coated and Si-HA-coated porous titanium exhibited a significantly higher BIR than the uncoated titanium at all intervals, highlighting the better surface bioactivity and osteoconductivity of the HA- and Si-HA coatings. Also, the Si-HA-coated porous titanium demonstrated a significantly higher BIR than the HA-coated porous titanium, showing that silicon plays an active role in the surface bioactivity. For Si-HA-coated porous titanium, up to 90% pore area was covered by new bone tissue after 4 weeks of implantation in cortical bone. In the bone marrow cavity, the pore spaces were filled with bone marrow, displaying that the interconnected pore structure could provide a channel for body fluid. It was concluded that both the 3D interconnected pore structure and the Si-HA coating contributed to the high BIR. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据