4.8 Article

Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes:: In vitro characterization

期刊

ACTA BIOMATERIALIA
卷 4, 期 5, 页码 1208-1217

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2008.02.028

关键词

neural probes; L1; laminin; PEG; neurite outgrowth

资金

  1. Whitaker Foundation
  2. Department of Bioengineering (University of Pittsburgh)
  3. McGowan Institute for Regenerative Medicine (University of Pittsburgh)
  4. Competitive Medical Research Fund (CMRF)
  5. Central Research Development Fund (CRDF)

向作者/读者索取更多资源

Silicon-based implantable neural electrode arrays are known to experience failure during long-term recording, partially due to host tissue responses. Surface modification and immobilization of biomolecules may provide a means to improve their biocompatibility and integration within the host brain tissue. Previously. the laminin biomolecule Or laminin fragments have been used to modify the neural probe's silicon surface to promote neuronal attachment and growth. Here we report the successful immobilization of the L1 biomolecule on a silicon surface. L1 is a neuronal adhesion molecule that can specifically promote neurite outgrowth and neuronal survival. Silane chemistry and the heterobifunctional coupling agent 4-maleimidobutyric acid N-hydroxysuccinimide ester (GMBS) were used to covalently bind these two biomolecules onto the surface of silicon dioxide wafers, which mimic the surface of silicon-based implantable neural probes. After covalent binding of the biomolecules, polyethylene glycol (PEG)-NH2 was used to cap the unreacted GMBS groups. Surface immobilization was verified by goniometry, dual polarization interferometry, and immunostaining techniques. Primary murine neurons or astrocytes were used to evaluate the modified silicon surfaces. Both L1- and laminin-modified surfaces promoted neuronal attachment, while the L1-modified Surface demonstrated significantly enhanced levels of neurite outgrowth (p < 0.05). In addition, the laminin-modified surface promoted astrocyte attachment, while the L1-modified surface showed significantly reduced levels of astrocyte attachment relative to the laminin-modified surface and other controls (p < 0.05). These results demonstrate the ability of the L1- immobilized surface to specifically promote neuronal growth and neurite extension. while inhibiting the attachment of astrocytes, one of the main cellular components of the glial sheath. Such unique properties present vast potentials to improve the biocompatibility and chronic recording performance of neural probes. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据