4.8 Article

Effect of surface treatment on the bioactivity of nickel-titanium

期刊

ACTA BIOMATERIALIA
卷 4, 期 6, 页码 1969-1984

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2008.05.010

关键词

Bioactivity; Nitinol; Nickel-titanium alloy; Heat treatment; Spark oxidation

资金

  1. EU FP6, IEF Marie Curie Action

向作者/读者索取更多资源

In this paper, the bioactive properties of Ni-Ti alloy after different surface treatments were evaluated in different media (Hanks' balanced salt solution, Dulbecco's modified Eagle's medium and osteogenic). Evaluation was performed on the basis of X-ray photoelectron spectroscopy and atomic force microscopy studies after immersing samples for up to 24 h in the relevant media. This allowed assessment of the kinetics of Ca2+ and P5+ precipitation and early interaction of the media with surfaces. In addition, the surface free energy was measured and the influence of heat treatment on phase transformation temperatures and rate of nickel and titanium ion release was investigated. The most favourable bioactive properties were observed for simply ground Ni-Ti samples when evaluated in HBSS, which showed similar properties to reference positive samples (BioactiveTi). On the other hand, samples heat-treated at 600 degrees C showed very low levels of precipitation of Ca and P. Most interestingly, evaluation in the media containing organic components (protein, vitamins, antibiotics and drugs) revealed that bioactivity for all the samples was at the same level (except for the reference negative) irrespective of the surface preparation method. It demonstrated that organic components interact with the surface rapidly, forming a thin protein layer, and this altered the surface properties of the samples, making them bioactive. No significant difference in kinetics of the Ca2+ and P5+ precipitation were observed. Nevertheless, further ion release and chemical composition evaluation revealed that alkali treatment and spark oxidation cannot be considered as a useful for biomedical application due to very high levels of Ni in the top layer (alkali-treated) and high rate of Ni release (spark-oxidized and alkali-treated). (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据