4.8 Article

A Simple Evaporation Method for Large-Scale Production of Liquid Crystalline Lipid Nanoparticles with Various Internal Structures

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 36, 页码 20438-20446

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b06413

关键词

evaporation method; lipid crystalline lipid nanoparticles; large scale synthesis; vesicles to lipid-filled nanoparticle transitions; internal structures

资金

  1. NRF [NRF-2012R1A1A1004697, NRF-2015R1A2A2A01007003]
  2. KETEP
  3. Ministry of Trade, Industry, and Energy of the Korean government [20133030000300]
  4. National Coordinating Center for Global Cosmetics RD, South Korea [HN14C0083]

向作者/读者索取更多资源

We present a simple and industrially accessible method of producing liquid crystalline lipid nanoparticles with various internal structures based on phytantriol, Pluronic F127, and vitamin E acetate. Bilayer vesicles were produced when an ethanolic solution dissolving the lipid components was mixed with deionized water. After the evaporation of ethanol from the aqueous mixture, vesicles were transformed into lipid-filled liquid crystalline nanoparticles with well-defined internal structures such as hexagonal lattices (mostly inverted cubic Pn3m), lined or coiled pattern (inverted hexagonal H-2), and disordered structure (inverse microemulsion, L-2), depending on the compositions. Further studies suggested that their internal structures were also affected by temperature. The internal structures were characterized from cryo-TEM and small-angle X-ray scattering results. Microcalorimetry studies were performed to investigate the degree of molecular ordering/crystallinity of lipid components within the nanostructures. From the comparative studies, we demonstrated the present method could produce the lipid nanoparticles with similar characteristics to those made from a conventional method. More importantly, the production only requires simple tools for mixing and ethanol evaporation and it is possible to produce 10 kg or so per batch of aqueous lipid nanopartides dispersions, enabling the large-scale production of the liquid crystalline nanopartides for various biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据