3.8 Article

Manufacture of a β-titanium hollow shaft by incremental forming

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11740-010-0280-z

关键词

Incremental forming; Spin extrusion; Beta-titanium alloys (Ti-10V-2Fe-3Al); Microstructure analysis

向作者/读者索取更多资源

Excellent mechanical properties and corrosion resistance combined with low weight qualify beta-titanium materials for lightweight applications in aviation, automotive and energy engineering. Thus far, actual applications of these materials have been limited due to high material costs and limited processing knowledge. One approach for developing resource-efficient manufacturing methods is the application of incremental forming methods. This article focuses on the development of the incremental spin extrusion process, which creates hollow profiles from solid bars. This method allows hollow shape manufacturing with a much higher flexibility than other forming methods and a significantly improved material utilization in comparison to machining methods, such as deep hole drilling. Beta-titanium alloys basically have very good cold forming suitability and the resulting material properties can be controlled. The application of incremental forming methods with high hydrostatic compressive stress is a promising manufacturing approach. The beta-titanium Ti-10V-2Fe-3Al material has an excellent combination of the properties strength, ductility and fatigue strength. In order to utilize these properties the forming conditions and the temperature control need to be optimized. The investigations show that the Ti-10V-2Fe-3Al material can be formed only in a narrow semi-hot forming temperature window. The paper describes the investigation and presents results on the design of partial forming process sequences, forming properties, microstructure formation and failure prevention. The process design objective is a very fine microstructure with a homogeneous secondary alpha-phase and very small grained beta-phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据