4.8 Article

Identifying the Coiled-Coil Triple Helix Structure of beta-Peptide Nanofibers at Atomic Resolution

期刊

ACS NANO
卷 12, 期 9, 页码 9101-9109

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b03131

关键词

beta-peptides; nanostructured materials; self-assembly; structure elucidation; supramolecular chemistry

资金

  1. Australian Government
  2. Melbourne Bioinformatics

向作者/读者索取更多资源

Peptide self-assembly represents a powerful bottom-up approach to the fabrication of nanomaterials. beta(3) -Peptides are non-natural peptides composed entirely of beta-amino acids, which have an extra methylene in the backbone, and we reported fibers derived from the self-assembly of beta(3) -peptides that adopt 14-helical structures. beta(3) Peptide assemblies represent a class of stable nanomaterials that can be used to generate bio- and magneto-responsive materials with proteolytic stability. However, the three-dimensional structure of many of these materials remains unknown. To develop structure-based criteria for the design of beta(3)-peptide-based biomaterials with tailored function, we investigated the structure of a tri-beta(3)-peptide nanoassembly by molecular dynamics simulations and X-ray fiber diffraction analysis. Diffraction data was collected from aligned fibrils formed by Ac-beta(3) [LIA] in water and used to inform and validate the model structure. Models with 3-fold radial symmetry resulted in stable fibers with a triple-helical coiled-coil motif and measurable helical pitch and periodicity. The fiber models revealed a hydrophobic core and twist along the fiber axis arising from a maximization of contacts between hydrophobic groups of adjacent tripeptides on the solvent-exposed fiber surface. These atomic structures of macroscale fibers derived from beta(3)-peptide-based materials provide valuable insight into the effects of the geometric placement of the side chains and the influence of solvent on the core fiber structure which is perpetuated in the superstructure morphology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据