4.8 Article

Mapping Transient Protein Interactions at the Nanoscale in Living Mammalian Cells

期刊

ACS NANO
卷 12, 期 10, 页码 9842-9854

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b01227

关键词

protein-protein interactions; single-molecule localization microscopy; fluorescence microscopy; live-cell imaging; interaction map; epidermal growth factor; cell signaling

资金

  1. Research Foundation-Flanders (FWO Onderzoeksproject) [G0B5514N, G0A5817N, 1529418N]
  2. KU Leuven [C14/16/053]
  3. Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)

向作者/读者索取更多资源

Protein-protein interactions (PPIs) form the basis of cellular processes, regulating cell behavior and fate. PPIs can be extremely transient in nature, which hinders their detection. In addition, traditional biochemical methods provided limited information on the spatial distribution and temporal dynamics of PPIs that is crucial for their regulation in the crowded cellular environment. Given the pivotal role of membrane micro- and nano-domains in the regulation of PPIs at the plasma membrane, the development of methods to visualize PPIs with a high spatial resolution is imperative. Here, we present a super resolution fluorescence microscopy technique that can detect and map short-lived transient protein-protein interactions on a nanometer scale in the cellular environment. This imaging method is based on single-molecule fluorescence microscopy and exploits the effect of the difference in the mobility between cytosolic and membrane-bound proteins in the recorded fluorescence signals. After the development of the proof of concept using a model system based on membrane-bound modular protein domains and fluorescently labeled peptides, we applied this imaging approach to investigate the interactions of cytosolic proteins involved in the epidermal growth factor signaling pathway (namely, Grb2, c-Raf, and PLC gamma 1). The detected clusters of Grb2 and c-Raf were correlated with the distribution of the receptor at the plasma membrane. Additionally, the interactions of wild type PLC gamma 1 were compared with those detected with truncated mutants, which provided important information regarding the role played by specific domains in the interaction with the membrane. The results presented here demonstrate the potential of this technique to unravel the role of membrane heterogeneity in the spatiotemporal regulation of cell signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据