4.8 Article

Potential Toxicity of Graphene to Cell Functions via Disrupting Protein-Protein Interactions

期刊

ACS NANO
卷 9, 期 1, 页码 663-669

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn506011j

关键词

nanotoxicity; graphene nanosheet; protein-protein interaction

向作者/读者索取更多资源

While carbon-based nanomaterials such as graphene and carbon nanotubes (CNTs) have become popular in state-of-the-art nanotechnology, their biological safety and underlying molecular mechanism is still largely unknown. Experimental studies have been focused at the cellular level and revealed good correlations between cells death and the application of CNTs or graphene. Using large-scale all-atom molecular dynamics simulations, we theoretically investigate the potential toxicity of graphene to a biological cell at molecular level. Simulation results show that the hydrophobic proteinprotein interaction (or recognition) that is essential to biological functions can be interrupted by a graphene nanosheet. Due to the hydrophobic nature of graphene, it is energetically favorable for a graphene nanosheet to enter the hydrophobic interface of two contacting proteins, such as a dimer. The forced separation of two functional proteins can disrupt the cells metabolism and even lead to the cells mortality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据