4.8 Article

Chemical Deposition of Cu2O Nanocrystals with Precise Morphology Control

期刊

ACS NANO
卷 8, 期 1, 页码 162-174

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn405891g

关键词

cuprous oxide; copper(I) oxide; semiconductor nanocrystals; crystal growth; competitive adsorption; electroless deposition

资金

  1. Israel Science Foundation [1251/11]
  2. Grand Center for Sensors & Security (Weizmann Institute)

向作者/读者索取更多资源

Copper(I) oxide nanoparticles (NPs) are emerging as a technologically important material, with applications ranging from antibacterial and fungicidal agents to photocatalysis. It is well established that the activity of Cu2O NPs is dependent on their crystalline morphology. Here we describe direct preparation of Cu2O nanocrystals (NCs) on various substrates by chemical deposition (CD), without the need of additives, achieving precise control over the NC morphology. The substrates are preactivated by gold seeding and treated with deposition solutions comprising copper sulfate, formaldehyde, NaOH, and citrate as a complexant. Production of NC deposits ranging from complete cubes to complete octahedra is demonstrated, as well as a full set of intermediate morphologies, i.e., truncated octahedra, cuboctahedra, and truncated cubes. The NC morphology is defined by the NaOH and complexant concentrations in the deposition solution, attributed to competitive adsorption of citrate and hydroxide anions on the Cu2O {100} and {111} crystal faces and selective stabilization of these faces. A sequential deposition scheme, i.e., Cu2O deposition on pregrown Cu2O NCs of a different morphology, is also presented. The full range of morphologies can be produced by controlling the deposition times in the two solutions, promoting the cubic and octahedral crystal habits. Growth rates in the < 100 > and < 111 > directions for the two solutions are estimated. The Cu2O NCs are characterized by SEM, TEM, GI-XRD, and UV-vis spectroscopy. It is concluded that CD furnishes a simple, effective, generally applicable, and scalable route to the synthesis of morphologically controlled Cu2O NCs on a variety of conductive and nonconductive surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据