4.8 Article

Secreted Biomolecules Alter the Biological Identity and Cellular Interactions of Nanoparticles

期刊

ACS NANO
卷 8, 期 6, 页码 5515-5526

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn4061012

关键词

nanoparticles; aggregation; protein corona; cell uptake; nano-bio interactions; cell conditioning; biomolecules

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [NETGP35015, RGPIN-288231]
  2. Canadian Institute of Health Research [COP-126588, MOP-93532]
  3. Canadian Health Research Program [CHRJ385829, CPG-104290]
  4. Canadian Research Chair [950-223824]
  5. Ontario Graduate Scholarship
  6. NSERC

向作者/读者索取更多资源

A nanoparticle's physical and chemical properties at the time of cell contact will determine the ensuing cellular response. Aggregation and the formation of a protein corona in the extracellular environment will alter nano particle size, shape, and surface properties, giving it a biological identity that is distinct from its initial synthetic identity. The biological identity of a nanoparticle depends on the composition of the surrounding biological environment and determines subsequent cellular interactions. When studying nanoparticle-cell interactions, previous studies have ignored the dynamic composition of the extracellular environment as cells deplete and secrete biomolecules in a process known as conditioning. Here, we show that cell conditioning induces gold nanoparticle aggregation and changes the protein corona composition in a manner that depends on nanoparticle diameter, surface chemistry, and cell phenotype. The evolution of the biological identity in conditioned media enhances the cell membrane affinity, uptake, and retention of nanoparticles. These results show that dynamic extracellular environments can alter nanoparticle-cell interactions by modulating the biological identity. The effect of the dynamic nature of biological environments on the biological identity of nanoparticles must be considered to fully understand nano-bio interactions and prevent data misinterpretation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据