4.8 Article

Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys

期刊

ACS NANO
卷 8, 期 5, 页码 4415-4429

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn4063598

关键词

sodium ion battery; NIB; NaB; SIB; lithium ion battery; LIB; anode; Sn; Sb; Ge; thin film

资金

  1. NSERC Discovery

向作者/读者索取更多资源

Here we provide the first report on several compositions of ternary Sn-Ge-Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate promising electrochemical behavior, with Sn50Ge25Sb25 being the best overall. This alloy has an initial reversible specific capacity of 833 mAhg(-1) (at 85 mAg(-1)) and 662 mAhg(-1) after 50 charge discharge cycles. Sn50Ge25Sb25 also shows excellent rate capability, displaying a stable capacity of 381 mAhg(-1) at a current density of 8500 mAg(-1) (similar to 10C). A survey of published literature indicates that 833 mAhg(-1) is among the highest reversible capacities reported for a Sn-based NIB anode, while 381 mAhg(-1) represents the optimum fast charge value. HRTEM shows that Sn50Ge25Sb25 Is a composite of 10-15 nm Sn and Sn-alloyed Ge nanocrystallites that are densely dispersed within an amorphous matrix. Comparing the microstructures of alloys where the capacity significantly exceeds the rule of mixtures prediction to those where it does not leads us to hypothesize that this new phenomenon originates from the Ge(Sn) that is able to sodiate beyond the 1:1 Na:Ge ratio reported for the pure element. Combined TOF-SIMS, EELS TEM, and FIB analysis demonstrates substantial Na segregation within the film near the current collector interface that is present as early as the second discharge, followed by cycling-induced delamination from the current collector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据