4.8 Article

Structure-Determining Step in the Hierarchical Assembly of Peptoid Nanosheets

期刊

ACS NANO
卷 8, 期 11, 页码 11674-11684

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn505007u

关键词

two-dimensional materials; supramolecular assembly; protein-mimetic materials; coarse-grained modeling; bioinspired polymers; interfacial assembly; monolayer compression

资金

  1. Defense Threat Reduction Agency [IACRO-B1144571]
  2. Advanced Light Source
  3. National Energy Research Scientific Computing Center, at Lawrence Berkeley National Laboratory
  4. Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]
  5. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

Organic two-dimensional nanomaterials are of growing importance, yet few general synthetic methods exist to produce them in high yields and to precisely functionalize them. We previously developed an efficient hierarchical supramolecular assembly route to peptoid bilayer nanosheets, where the organization of biomimetic polymer sequences is catalyzed by an airwater interface. Here we determine at which stages of assembly the nanoscale and atomic-scale order appear. We used X-ray scattering, grazing incidence X-ray scattering at the airwater interface, electron diffraction, and a recently developed computational coarse-grained peptoid model to probe the molecular ordering at various stages of assembly. We found that lateral packing and organization of the chains occurs during the formation of a peptoid monolayer, prior to its collapse into a bilayer. Identifying the structure-determining step enables strategies to influence nanosheet order, to predict and optimize production yields, and to further engineer this class of material. More generally, our results provide a guide for using fluid interfaces to catalytically assemble 2D nanomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据