4.8 Article

In Situ Scanning Electron Microscope Peeling To Quantify Surface Energy between Multiwalled Carbon Nanotubes and Graphene

期刊

ACS NANO
卷 8, 期 1, 页码 124-138

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn402485n

关键词

carbon nanotubes; graphene; in situ SEM testing; adhesion energy; molecular mechanics; chemical functionalization

资金

  1. ARO MURI award [W911NF-09-1-0541]
  2. NSF award [CMMI-1235480]
  3. Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program
  4. Northwestern University Ryan Fellowship & International Institute for Nanotechnology

向作者/读者索取更多资源

Understanding atomic interactions between constituents is critical to the design of high-performance nanocomposites. Here, we report an experimental-computational approach to investigate the adhesion energy between as-produced arc discharge multiwalled carbon nanotubes (MWCNTs) and graphene. An in situ scanning electron microscope (SEM) experiment is used to peel MWCNTs from graphene grown on copper foils. The force during peeling is obtained by monitoring the deflection of a cantilever. Finite element and molecular mechanics simulations are performed to assist the data analysis and interpretation of the results. A finite element analysis of the experimental configuration is employed to confirm the applicability of Kendall's peeling model to obtain the adhesion energy. Molecular mechanics simulations are used to estimate the effective contact width at the MWCNT-graphene interface. The measured surface energy is gamma = 0.20 +/- 0.09 J . m(-2) or gamma = 0.36 +/- 0.16 J . m(-2), depending on the assumed conformation of the tube cross section during peeling. The scatter in the data is believed to result from an amorphous carbon coating on the MWCNTs, observed using transmission electron microscopy (TEM), and the surface roughness of graphene as characterized by atomic force microscopy (AFM).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据