4.8 Article

Ultrafast Spectroscopic Signature of Charge Transfer between Single-Walled Carbon Nanotubes and C60

期刊

ACS NANO
卷 8, 期 8, 页码 8573-8581

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn503271k

关键词

single-walled carbon nanotubes; fullerene; electron transfer; photovoltaic; charge generation; exciton dissociation; recombination; trion

资金

  1. Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308]

向作者/读者索取更多资源

The time scales for interfacial charge separation and recombination play crucial roles in determining efficiencies of excitonic photovoltaics. Near-infrared photons are harvested efficiently by semiconducting single-walled carbon nanotubes (SWCNTs) paired with appropriate electron acceptors, such as fullerenes (e.g., C-60). However, little is known about crucial photochemical events that occur on femtosecond to nanosecond time scales at such heterojunctions. Here, we present transient absorbance measurements that utilize a distinct spectroscopic signature of charges within SWCNTs, the absorbance of a trion quasiparticle, to measure both the ultrafast photoinduced electron transfer time (tau(pet)) and yield (phi(pet)) in photoexcited SWCNT-C-60 bilayer films. The rise time of the trion-induced absorbance enables the determination of the photoinduced electron transfer (PET) time of tau(pet) <= 120 fs, while an experimentally determined trion absorbance cross section reveals the yield of charge transfer (phi(pet) approximate to 38 +/- 3%). The extremely fast electron transfer times observed here are on par with some of the best donor: acceptor pairs in excitonic photovoltaics and underscore the potential for efficient energy harvesting in SWCNT-based devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据