4.8 Article

Influence of Nanohelical Shape and Periodicity on Stem Cell Fate

期刊

ACS NANO
卷 7, 期 4, 页码 3351-3361

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn4001325

关键词

silica nanostructures; nanohelical periodicity; surface functionalization; stem cell microenvironment; cell differentiation

资金

  1. Region Aquitaine
  2. GIS Advanced Materials in Aquitaine
  3. Agence Nationale pour la Recherche (ANR)

向作者/读者索取更多资源

Microenvironments such as protein composition, physical features, geometry, and elasticity play important roles in stem cell lineage specification. The components of the extracellular matrix are known to subsequently assemble into fibrillar networks in vivo with defined periodicity. However, the effect of the most critical parameter, which involves the periodicity of these fibrillar networks, on the stem cell fate is not yet investigated. Here, we show the effect of synthetic fibrillar networks patterned with nanometric periodicities, using bottom-up approaches, on the response of stem cells. We have used helical organic nanoribbons based on self-assemblies of Gemini-type amphiphiles to access chiral silica nanoribbons with two different shapes and periodicities (twisted ribbons and helical ribbons) from the same native self-assembled organic nanostructure. We demonstrate the covalent grafting of these silica nanoribbons onto activated glass substrates and the influence of this programmed isotropically oriented matrix to direct the commitment of human mesenchymal stem cells (hMSCs) into osteoblast lineage in vitro, free of osteogenic-inducing media. The specific periodicity of 63 nm (5 nm) with helical ribbon shape induces specific cell adhesion through the fibrillar focal adhesion formation and leads to stem cell commitment into osteoblast lineage. In contrast, the matrix of periodicity 100 nm (15 nm) with twisted ribbon shape does not lead to osteoblast commitment. The inhibition of non-muscle myosin II with blebbistatin is sufficient to block this osteoblast commitment on helical nanoribbon matrix, demonstrating that stem cells interpret the nanohelical shape and periodicity environment physically. These results indicate that hMSCs could interpret nanohelical shape and periodicity in the same way they sense microenvironment elasticity. This provides a promising tool to promote hMSC osteogenic capacity, which can be exploited in a 3D scaffold for bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据