4.8 Article

Thermal Stability of Colloidal InP Nanocrystals: Small Inorganic Ligands Boost High-Temperature Photoluminescence

期刊

ACS NANO
卷 8, 期 1, 页码 977-985

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn405811p

关键词

colloidal nanomaterials; thermal stability; inorganic ligands; transient absorption; static; time-resolved photoluminescence; PL quenching; semiconductors; InP

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  2. National Science Foundation [DGE-0824162]

向作者/读者索取更多资源

We examine the stability of excitons in quantum-confined InP nanocrystals as a function of temperature elevation up to 800 K. Through the use of static and time-resolved spectroscopy, we find that small inorganic capping ligands substantially improve the temperature dependent photoluminescence quantum yield relative to native organic ligands and perform similarly to a wide band gap inorganic shell. For this composition, we identify the primary exciton loss mechanism as electron trapping through a combination of transient absorption and transient photoluminescence measurements. Density functional theory indicates little impact of studied inorganic ligands on InP core states, suggesting that reduced thermal degradation relative to organic ligands yields improved stability; this is further supported by a lack of size dependence in photoluminescence quenching, pointing to the dominance of surface processes, and by relative thermal stabilities of the surface passivating media. Thus, small inorganic ligands, which benefit device applications due to improved carrier access, also improve the electronic integrity of the material during elevated temperature operation and subsequent to high temperature material processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据