4.8 Article

Metal Contacts on Physical Vapor Deposited Monolayer MoS

期刊

ACS NANO
卷 7, 期 12, 页码 11350-11357

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn4052138

关键词

molybdenum disulfide; metal contact; homogeneity; atomic force microscopy; Raman spectroscopy; graphene; buffer layer

资金

  1. NSF [CHE-1300180]
  2. Center for Low Energy Systems Technology (LEAST)
  3. STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation program
  4. MARCO
  5. DARPA
  6. U.S. DoE, BES, Materials Science and Engineering Division
  7. Division Of Chemistry
  8. Direct For Mathematical & Physical Scien [1300180] Funding Source: National Science Foundation

向作者/读者索取更多资源

The understanding of the metal and transition metal dichalcogenide (TMD) interface is critical for future electronic device technologies based on this new class of two-dimensional semiconductors. Here, we investigate the initial growth of nanometer-thick Pd, Au, and Ag films on monolayer MoS2. Distinct growth morphologies are identified by atomic force microscopy: Pd forms a uniform contact, Au clusters into nanostructures, and Ag forms randomly distributed islands on MoS2. The formation of these different interfaces is elucidated by large-scale spin-polarized density functional theory calculations. Using Raman spectroscopy, we find that the interface homogeneity shows characteristic Raman shifts in E-2g(1) and A(1g) modes. Interestingly, we show that insertion of graphene between metal and MoS2 can effectively decouple MoS2 from the perturbations imparted by metal contacts (e.g., strain), while maintaining an effective electronic coupling between metal contact and MoS2, suggesting that graphene can act as a conductive buffer layer in TMD electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据