4.8 Article

In Situ Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth

期刊

ACS NANO
卷 7, 期 9, 页码 7901-7912

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn402927q

关键词

graphene; chemical vapor deposition (CVD); Ni; surface carbide; scanning tunneling microscopy (STM); X-ray photoelectron spectroscopy (XPS)

资金

  1. Area di Ricerca Scientifica e Tecnologica of Trieste
  2. MIUR through Progetto Strategico NFFA
  3. CNR through the ESF FANAS project NOMCIS
  4. MIUR [PRIN 2010-2011, 2010N3T9M4]
  5. ICTP TRIL program
  6. ERC [279342]
  7. EPSRC
  8. Nano Science & Technology Doctoral Training Centre Cambridge (NanoDTC)
  9. European Research Council (ERC) [279342] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 degrees C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 degrees C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 degrees C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline NI catalysts and recipes commonly used In Industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据