4.8 Article

Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer in Vitro and in Vivo

期刊

ACS NANO
卷 7, 期 2, 页码 994-1005

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn3044066

关键词

multidrug resistance; codelivery; mesoporous silica nanoparticle; high throughput screening; heterogeneous gene knockdown

资金

  1. US Public Health Service Grant [RO1 CA133697]

向作者/读者索取更多资源

We used a multifunctional mesoporous silica nanoparticle (MSNP) carrier to overcome doxorubicin (Dot) resistance in a multidrug resistant (MDR) human breast cancer xenograft by codelivering Dox and siRNA that targets the P-glycoprotein (Pgp) drug exporter. The Pgp siRNA selection from among a series of drug resistance targets was achieved by performing high throughput screening in a MDR breast cancer cell line, MCF-7/MDR. Following the establishment of a MCF-7/MDR xenograft model in nude mice, we demonstrated that a 50 nm MSNP, functionalized by a polyethyleneimine polyethylene glycol (PEI-PEG) copolymer, provides protected delivery of stably bound Dot and Pgp siRNA to the tumor site. The effective biodistribution and reduced reticuloendothelial uptake, as a result of our nanocarrier design, allowed us to achieve an 8% enhanced permeability and retention effect at the tumor site. Compared to free Dox or the carrier loaded with either drug or siRNA alone, the dual delivery system resulted in synergistic inhibition of tumor growth in vivo. Analysis of multiple xenograft biopsies demonstrated significant Pgp knockdown at heterogeneous tumor sites that correspond to the regions where Dox was released intracellularly and induced apoptosis. We emphasize that the heterogeneity originates in the tumor microenvironment, which influences the vascular access, rather than heterogeneous Pgp expression in the MDR cells. Taken together, these data provide proof-of-principle testing of the use of a dual drug/siRNA nanocarrier to overcome Dox resistance in a xenograft. The study also provides the first detailed analysis of the impact of heterogeneity in the tumor microenvironment on the efficacy of siRNA delivery in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据