4.8 Article

Extraordinary Improvement of the Graphitic Structure of Continuous Carbon Nanofibers Templated with Double Wall Carbon Nanotubes

期刊

ACS NANO
卷 7, 期 1, 页码 126-142

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn303423x

关键词

continuous carbon nanofibers; double-wall carbon nanotubes; carbonization templating; graphitic structure; molecular dynamics simulations

资金

  1. ARO MURI [W911NF-09-1-0541]
  2. NSF [NIRT-0709333, CMMI-0600675, CBET-1140065]
  3. AFOSR [FA9550-11-1-0204]

向作者/读者索取更多资源

Carbon nanotubes are being widely studied as a reinforcing element in high-performance composites and fibers at high volume fractions. However, problems with nanotube processing, alignment, and non-optimal stress transfer between the nanotubes and surrounding matrix have so far prevented full utilization of their superb mechanical properties in composites. Here, we present an alternative use of carbon nanotubes, at a very small concentration, as a templating agent for the formation of graphitic structure in fibers. Continuous carbon nanofibers (CNF) were manufactured by electrospinning from polyacrylonitrile (PAN) with 1.2% of double wall nanotubes (DWNT). Nanofibers were oxidized and carbonized at temperatures from 600 degrees C to 1850 degrees C Structural analyses revealed significant improvements in graphitic structure and crystal orientation in the templated CNFs, with the largest improvements observed at lower carbonization temperatures. In situ pull-out experiments showed good interfacial bonding between the DWNT bundles and the surrounding templated carbon matrix. Molecular Dynamics (MD) simulations of templated carbonization confirmed oriented graphitic growth and provided insight Into mechanisms of carbonization initiation. The obtained results indicate that global templating of the graphitic structure in fine CNFs can be achieved at very small concentrations of well-dispersed DWNTs. The outcomes reveal a simple and inexpensive route to manufacture continuous CNFs with improved structure and properties for a variety of mechanical and functional applications. The demonstrated improvement of graphitic order at low carbonization temperatures in the absence of stretch shows potential as a promising new manufacturing technology for next generation carbon fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据