4.8 Article

Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by In Situ Environmental TEM

期刊

ACS NANO
卷 6, 期 5, 页码 4241-4247

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn3007652

关键词

environmental TEM; in situ TEM; cobalt catalysts; porosity control; Fischer-Tropsch synthesis

资金

  1. Office of Basic Energy Sciences, Chemical Science Division of the U.S. DOE [DE-AC02-05CH11231]
  2. U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]
  3. U.S. Department of Energy (DOE) [DE-AC02-05CH11231]
  4. DOE Office of Science

向作者/读者索取更多资源

Simultaneously probing the electronic structure and morphology of materials at the nanometer or atomic scale while a chemical reaction proceeds is significant for understanding the underlying reaction mechanisms and optimizing a materials design. This is especially important In the study of nanoparticle catalysts, yet such experiments have rarely been achieved. Utilizing an environmental transmission electron microscope equipped with a differentially pumped gas cell, we are able to conduct nanoscopic imaging and electron energy loss spectroscopy in situ for cobalt catalysts under reaction conditions. Studies reveal quantitative correlation of the cobalt valence states with the particles' nanoporous structures. The in situ experiments were performed on nanoporous cobalt particles coated with silica, while a 15 mTorr hydrogen environment was maintained at various temperatures (300-600 degrees C). When the nanoporous particles were reduced, the valence state changed from cobalt oxide to metallic cobalt and concurrent structural coarsening was observed. In situ mapping of the valence state and the corresponding nanoporous structures allows quantitative analysis necessary for understanding and improving the mass activity and lifetime of cobalt-based catalysts, for example, for Fischer-Tropsch synthesis that converts carbon monoxide and hydrogen into fuels, and uncovering the catalyst optimization mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据