4.8 Article

Chemical Transformations Drive Complex Self-Assembly of Uracil on Close-Packed Coinage Metal Surfaces

期刊

ACS NANO
卷 6, 期 3, 页码 2477-2486

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn204863p

关键词

uracil; copper surface; silver surface; scanning tunneling microscopy; X-ray photoelectron spectroscopy; near-edge X-ray absorption fine structure; density functional theory

资金

  1. EU through the European Research Council [247299]
  2. Marie Curie Intra-European Fellowship NASUMECA [274842]

向作者/读者索取更多资源

We address the interplay of adsorption, chemical nature, and self-assembly of uracil on the Ag(111) and Cu(111) surfaces as a function of molecular coverage (0.3 to 1 monolayer) and temperature. We find that both metal surfaces act as templates and the Cu(111) surface acts additionally as a catalyst for the resulting self-assembled structures. With a combination of STM, synchrotron XPS, and NEXAFS studies, we unravel a distinct polymorphism on Cu(111), in stark contrast to what is observed for the case of uracil on the more inert Ag(111) surface. On Ag(111) uracil adsorbs flat and intact and forms close-packed two-dimensional islands. The self-assembly is driven by stable hydrogen-bonded dimers with poor two-dimensional order. On Cu(111) complex structures are observed exhibiting, in addition, a strong annealing temperature dependence. We determine the corresponding structural transformations to be driven by gradual deprotonation of the uracil molecules. Our XPS study reveals unambiguously the tautomeric signature of uracil in the contact layer and on Cu(111) the molecule's deprotonation sites. The metal-mediated deprotonation of uracil and the subsequent electron localization in the molecule determine important biological reactions. Our data show a dependence between molecular coverage and molecule-metal interaction on Cu(111), as the molecules tilt at higher coverages in order to accommodate a higher packing density. After deprotonation of both uracil N atoms, we observe an adsorption geometry that can be understood as coordinative anchoring with a significant charge redistribution in the molecule. DFT calculations are employed to analyze the surface bonding and accurately describe the pertaining electronic structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据