4.8 Article

Improving Open Circuit Potential in Hybrid P3HT:CdSe Bulk Heterojunction Solar Cells via Colloidal tert-Butylthiol Ligand Exchange

期刊

ACS NANO
卷 6, 期 5, 页码 4222-4230

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn3007509

关键词

CdSe; semiconductor nanocrystal; P3HT; hybrid solar cell; open-circuit potential

资金

  1. Center for Energy Nanoscience, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001013]
  3. Research Corporation for Science Advancement

向作者/读者索取更多资源

Organic ligands have the potential to contribute to the reduction potential, or lowest unoccupied molecular orbital (LUMO) energy, of semiconductor nanocrystals. Rationally introducing small, strongly binding, electron-donating ligands should enable improvement in the open draft potential of hybrid organic/inorganic solar cells by raising the LUMO energy level of the nanocrystal acceptor phase and thereby increasing the energy offset from the polymer highest occupied molecular orbital (HOMO). Hybrid organic/inorganic solar cells fabricated from blends of tert-butylthiol-treated CdSe nanocrystals and poly(3-hexylthiophene) (P3HT) achieved power conversion efficiencies of 1.9%. Compared to devices made from pyridine-treated and nonligand exchanged CdSe, the thiol-treated CdSe nanocrystals are found to consistently exhibit the highest open circuit potentials with V-oc = 0.80 V. Electrochemical determination of LUMO levels using cyclic voltammetry and spectroelectrochemistry suggest that the thiol-treated CdSe nanocrystals possess the highest lying LUMO of the three, which translates to the highest open circuit potential. Steady-state and time-resolved photoluminescence quenching experiments on P3HT:CdSe films provide insight into how the thiol-treated CdSe nanocrystals also achieve greater current densities in devices relative to pyridine-treated nanocrystals, which are thought to contain a higher density of surface traps.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据