4.8 Article

Rapid and Label-Free Single-Nucleotide Discrimination via an Integrative Nanoparticle-Nanopore Approach

期刊

ACS NANO
卷 6, 期 10, 页码 8815-8823

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn302636z

关键词

nanopore; gold nanoparticle; nanoparticle assembly; single-nucleotide polymorphism; real-time detection; label-free

资金

  1. Singapore Ministry of Education Academic Research Fund Tier 2 [MOE2008-T2-1-046]

向作者/读者索取更多资源

Single-nucleotide polymorphism (SNP) is an important biomarker for disease diagnosis, treatment monitoring, and development of personalized medicine. Recent works focused primarily on ultrasensitive detection, while the need for rapid and label-free single-nucleotide discrimination techniques, which are crucial criteria for translation into clinical applications, remains relatively unexplored. In this work, we developed a novel SNP detection assay that integrates two complementary nanotechnology systems, namely, a highly selective nanoparticle-DNA detection system and a single-particle sensitive nanopore readout platform, for rapid detection of single-site mutations. Discrete nanoparticle-DNA structures formed in the presence of perfectly matched (PM) or single-mismatched (SM) targets exhibited distinct size differences, which were resolved on a size-tunable nanopore platform to generate corresponding yes/no readout signals. Leveraging the in situ reaction monitoring capability of the nanopore platform, we demonstrated that real-time single-nucleotide discrimination of a model G487A mutation, responsible for glucose-6-phosphate dehydrogenase deficiency, can be achieved within 30 min with no false positives. Semiquantification of DNA samples down to picomolar concentration was carried out using a simple parameter of particle count without the need for sample labeling or signal amplification. The unique combination of nanoparticle-based detection and nanopore readout presented in this work brings forth a rapid, specific, yet simple biosensing strategy that can potentially be developed for point-of-care application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据