4.8 Article

Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable Sodium-Ion Batteries

期刊

ACS NANO
卷 6, 期 1, 页码 530-538

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn203869a

关键词

nanostructured electrodes; electrochemical deposition; bilayered V2O5; sodium-ion battery

资金

  1. U.S. Department of Energy
  2. U.S. DOE-BES [DE-AC02-06CH11357]
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  4. NSERC (Canada)
  5. National Science Foundation-Earth Sciences [EAR-0622171]
  6. Department of Energy-Geosciences [DE-FG02-94ER14466]

向作者/读者索取更多资源

Tailoring nanoarchitecture of materials offers unprecedented opportunities In utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na+ ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na2V2O5 stochiometry of 250 mAh/g. The stability evaluation during charge discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of similar to 760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据