4.8 Article

Effect of Layer Stacking on the Electronic Structure of Graphene Nanoribbons

期刊

ACS NANO
卷 5, 期 8, 页码 6096-6101

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn200941u

关键词

graphene nanoribbons; electronic structure; GNR magnetism; graphene interconnects; quasiparticle band gaps

资金

  1. SRC
  2. State of New York, NSF [0749140]
  3. NSF ECCS [1102481]
  4. National Science Foundation
  5. Directorate For Engineering
  6. Div Of Electrical, Commun & Cyber Sys [1102481] Funding Source: National Science Foundation
  7. Office of Advanced Cyberinfrastructure (OAC)
  8. Direct For Computer & Info Scie & Enginr [0749140] Funding Source: National Science Foundation

向作者/读者索取更多资源

The evolution of electronic structure of graphene nanoribbons (GNRs) as a function of the number of layers stacked together Is investigated using ab:initio density functional theory (DFT), including interlayer van der Waals interactions. Multilayer armchair GNRs (AGNRs), similar to single-layer AGNRs, exhibit three classes of band gaps depending on their width. In zigzag GNRs (ZGNRs), the geometry relaxation resulting from interlayer Interactions plays a crucial role in determining the magnetic polarization and the band structure. The antiferromagnetic (AF) interlayer coupling Is more stable compared to the ferromagnetic (FM) interlayer coupling. ZGNRs with the AF In-layer and AF interlayer coupling have a finite band gap, while ZGNRs with the FM In-layer and AF interlayer coupling do not have a band gap. The ground state:of the bilayer ZGNR is nonmagnetic with a small but finite band gap. The magnetic ordering is less stable in multilayer ZGNRs compared:. to that In single-layer ZGNRs. The quasiparticle GW corrections are smaller for bilayer GNRs compared to single-layer GNRs because of the reduced Coulomb effects in bilayer GNRs to compared to single layer GNRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据