4.8 Article

The Enzymatic Oxidation of Graphene Oxide

期刊

ACS NANO
卷 5, 期 3, 页码 2098-2108

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn103265h

关键词

graphene; oxidation; microscopy; peroxidase; field-effect transistor

资金

  1. NIEHS [R01ES019304]
  2. NIOSH [0H008282]
  3. European Commission [EC-FP7-NANOMMUNE-214281]
  4. EPA [FP-91713801]
  5. Computational Resources on PittGrid

向作者/读者索取更多资源

Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon-the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (similar to 40 mu M), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, ultraviolet-visible, electron paramagnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gas chromatography-mass spectrometry. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Owing to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据