4.8 Article

Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation

期刊

ACS NANO
卷 5, 期 5, 页码 3744-3757

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn200110j

关键词

upconversion nanoparticles; bioimaging; deep imaging; overheating free; near-infrared

资金

  1. National Nature Science Foundation of China [60978063, 61008052]
  2. Swedish Foundation for Strategic Research (SSF)
  3. Fundamental Research Funds for the Central Universities
  4. China Postdoctoral Science Foundation [20090461394]

向作者/读者索取更多资源

Successful further development of superhigh-constrast upconversion (UC) bioimaging requires addressing the existing paradox: 980 nm laser light is used to excite upconversion nanoparticles (UCNPs), while 980 nm light has strong optical absorption of water and biological specimens. The overheating caused by 980 nm excitation laser light in UC bioimaging is computationally and experimentally investigated for the first time. A new promising excitation approach for better near-infrared to near-infrared (NIR-to-NIR) UC photoluminescence in vitro or in vivo imaging is proposed employing a cost-effective 915 nm laser. This novel laser excitation method provides drastically less heating of the biological specimen and larger imaging depth In the animals or tissues due to quite low water absorption. Experimentally obtained thermal-graphic maps of the mouse in response to the laser heating are investigated to demonstrate the less heating advantage of the 915 nm laser. Our tissue phantom experiments and simulations verified that the 915 nm laser is superior to the 980 nm laser for deep tissue imaging. A novel and facile strategy for surface functionalization is utilized to render UCNPs hydrophilic, stable, and cell targeting. These as-prepared UCNPs were characterized by TEM, emission spectroscopy, XRD, FTIR, and zeta potential. Specifically targeting UCNPs excited with a 915 nm laser have shown very high contrast UC bioimaging. Highly stable DSPE-mPEG-5000-encapsulated UCNPs were injected into mice to perform in vivo imaging. Imaging and spectroscopy analysis of UC photoluminescence demonstrated that a 915 nm laser can serve as a new promising excitation light for UC animal imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据