4.8 Article

Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication

期刊

ACS NANO
卷 5, 期 3, 页码 2240-2247

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn1035075

关键词

DNA metallization; DNA origami; electroless deposition; nanoelectronic circuits; nanowire; Au

资金

  1. National Science Foundation [CBET-0708347]

向作者/读者索取更多资源

This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as lambda-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the Influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with kg and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据