4.8 Article

Microwave-Assisted Synthesis of a Core-Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid

期刊

ACS NANO
卷 5, 期 10, 页码 7788-7795

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn2015908

关键词

graphene oxide nanoribbon; multiwalled carbon nanotube; microwave; electrochemical biosensor; ascorbic acid; dopamine; uric acid

资金

  1. National Science Council
  2. Chang Gung University
  3. NSERC
  4. NRC
  5. CIHR of Canada
  6. University of Saskatchewan
  7. CFI
  8. CRC
  9. OIT

向作者/读者索取更多资源

In this study, graphene oxide nanoribbons (GONRs) were synthesized from the facile unzipping of multiwalled carbon nanotubes (MWCNTs) with the help of microwave energy. A core-shell MWCNT/GONR-modified glassy carbon (MWCNT/GONR/GC) electrode was used to electrochemically detect ascorbic add (AA), dopamine (DA), and uric acid (UA). In cyclic voltammograms, the MWCNT/GONR/GC electrode was found to outperform the MWCNT- and graphene-modified GC electrodes in terms of peak current. For the simultaneous sensing of three analytes, well-separated voltammetric peaks were obtained using a MWCNT/GONR/GC electrode In differential pulse voltammetry measurements. The corresponding peak separations were 229.9 mV (AA to DA), 126.7 mV (DA to UA), and 356.6 mV (AA to UA). This excellent electrochemical performance can be attributed to the unique electronic structure of MWCNTs/GONRs: a high density of unoccupied electronic states above the Fermi level and enriched oxygen-based functionality at the edge of the graphene-like structures, as revealed by X-ray absorption near-edge structure spectroscopy, obtained using scanning transmission X-ray microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据