4.8 Article

Working Together: The Combined Application of a Magnetic Field and Penetratin for the Delivery of Magnetic Nanoparticles to Cells in 3D

期刊

ACS NANO
卷 5, 期 10, 页码 7910-7919

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn202163v

关键词

magnetic nanoparticles; cell-penetrating peptides; magnetic field; 3D culture; collagen gel; cellular uptake

资金

  1. Royal Society
  2. European Commission (Nanosci Eplus)

向作者/读者索取更多资源

Nanoparticles (NPs) are currently being developed as vehicles for in vivo drug delivery. Two of the biggest barriers facing this therapy are the site-specific targeting and consequent cellular uptake of drug-loaded NPs'. In vitro studies in 2D cell cultures have shown that an external magnetic field (MF) and functionalization with cell-penetrating peptides (CPPs) have the capacity to overcome these barriers. This study aimed to investigate if the potential of these techniques, which has been reported in 2D, can be successfully applied to cells growing In a 3D environment. As such, this study provides a more realistic assessment of how these techniques might perform in future clinical settings. The effect of a MF and/or penetratin attachment on the uptake of 100 and 200 nm fluorescent iron oxide magnetic NPs (mNPs) into a fibroblast-seeded 3D collagen gel was quantified by inductively coupled plasma mass spectrometry. The most suitable mNP species was further investigated by fluorescence microscopy, histology, confocal microscopy, and TEM. Results show that gel mNP uptake occurred on average twice as fast in the presence of a MF and up to three times faster with penetratin attachment. In addition, a MF increased the distance of mNP travel through the gel, while penetratin increased mNP cell localization. This work is one of the first to demonstrate that MFs and CPPs can be effectively translated for use in 3D systems and, If applied together, will make excellent partners to achieve therapeutic drug delivery in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据