4.8 Article

Modeling of Thermal Transport in Pillared-Graphene Architectures

期刊

ACS NANO
卷 4, 期 2, 页码 1153-1161

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn901341r

关键词

pillared-graphene; carbon nanotubes; graphene; molecular dynamics; thermal transport; phonon scattering; thermal management

资金

  1. US Air Force Office of Scientific Research

向作者/读者索取更多资源

Carbon nanotubes (CNT) and graphene are considered as potential future candidates for many nano/microscale integrated devices due to their superior thermal properties. Both systems, however, exhibit significant anisotropy in their thermal conduction, limiting their performance as three-dimensional thermal transport materials. From thermal management perspective, one way to tailor this anisotropy is to consider designing alternative carbon-based architectures. This paper investigates the thermal transport in one such novel architecture-a pillared-graphene (PG) network nanostructure which combines graphene sheets and carbon nanotubes to create a three-dimensional network. Nonequilibrium molecular dynamics simulations have been carried out using the AIREBO potential to calculate the thermal conductivity of pillared-graphene structures along parallel (in-plane) as well as perpendicular (out-of-plane) directions with respect to the graphene plane. The resulting thermal conductivity values for PG systems are discussed and compared with simulated values for pure CNT and graphite. Our results show that in these PG structures, the thermal transport is governed by the minimum interpillar distance and the CNT-pillar length, This is primarily attributed to scattering of phonons occurring at the CNT-graphene junctions in these nanostructures. We foresee that such architecture could potentially be used as a template for designing future structurally stable microscale systems with tailorable in-plane and out-of-plane thermal transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据