4.8 Article

Carbon Nanotubes Reorganize Actin Structures in Cells and ex Vivo

期刊

ACS NANO
卷 4, 期 8, 页码 4872-4878

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn101151x

关键词

carbon nanotube; cytoskeleton; actin; toxicity; mitosis

资金

  1. NSF [CBET-0708418, DMR-0619424, DMR-0645596]
  2. Sloan Foundation

向作者/读者索取更多资源

The ability of globular actin to form filaments and higher-order network structures of the cytoskeleton is essential for cells to maintain their shape and perform essential functions such as force generation, motility, and division. Alterations of actin structures can dramatically change a cell's ability to function. We found that purified and dispersed single wall carbon nanotubes (SWCNTs) can induce actin bundling in cells and in purified model actin systems. SWCNTs do not induce acute cell death, but cell proliferation is greatly reduced in SWCNT-treated cells with an increase in actin-related division defects. Actin, normally present in basal stress fibers in control cells, is located in heterogeneous structures throughout the SWCNT-treated cell. These SWCNT-induced changes in actin structures are seen functionally in multinucleated cells and with reduced force generation. Ex vivo, purified actin filaments cross-linked with alpha-actinin and formed isotropic networks, whereas SWCNTs caused purified actin filaments to assemble into bundles. While purified, isolated SWCNTs do not appear acutely toxic, this subcellular reorganization may cause chronic changes to cellular functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据