4.8 Article

Clar Sextet Analysis of Triangular, Rectangular, and Honeycomb Graphene Antidot Lattices

期刊

ACS NANO
卷 5, 期 1, 页码 523-529

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn102442h

关键词

graphene; antidots; Clar sextets; band structure; band gap

资金

  1. Danish FTP Research council

向作者/读者索取更多资源

Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer. scale periodic array of holes In the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters Of the lattice. The,hole diameter, hole geometry, lattice geometry, and the separation of the holes are parameters that all play an important role in determining the size of the band gap, which, for technological applicatiens, should be at least of the order of tenths of an eV. We investigate four different hole configurations: the rectangular, the triangular, the rotated triangular, and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap the triangular arrangement displays always a shable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using, Clear sextet theory, and we find that a sufficient condition for a large gap is that the number of sextets exceeds one-third of the total number of hexagons in the unit cell. Furthermore we investigate, nonisosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据