4.8 Article

Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition

期刊

ACS NANO
卷 4, 期 10, 页码 5962-5968

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn1018208

关键词

quantum dots; solar cells; electrophoretic deposition; quantum dot sensitized solar cell; size effects

资金

  1. Israel Ministry of Industry and Trade

向作者/读者索取更多资源

Quantum dot sensitized solar cells (QDSSC) may benefit from the ability to tune the quantum dot optical properties and band gap through the manipulation of their size and composition. Moreover, the inorganic nanocrystals may provide increased stability compared to organic sensitizers. We report the facile fabrication of QDSSC by electrophoretic deposition of CdSe QDs onto conducting electrodes coated with mesoporous TiO2. Unlike prior chemical linker-based methods, no pretreatment of the TiO2 was needed, and deposition times as short as 2 h were sufficient for effective coating. Cross-sectional chemical analysis shows that the Cd content is nearly constant across the entire TiO2 layer. The dependence of the deposition on size was studied and successfully applied to CdSe dots with diameters between 2.5 and 5.5 nm as well as larger CdSe quantum rods. The photovoltaic characteristics of the devices are greatly improved compared with those achieved for cells prepared with a linker approach, reaching efficiencies as high as 1.7%, under 1 sun illumination conditions, after treating the coated electrodes with ZnS. Notably, the absorbed photon to electron conversion efficiencies did not show a clear size-dependence indicating efficient electron injection even for the larger QD sizes. The electrophoretic deposition method can be easily expanded and applied for preparations of QDSSCs using diverse colloidal quantum dot and quantum rod materials for sensitization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据