4.8 Article

Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes

期刊

ACS NANO
卷 3, 期 9, 页码 2667-2673

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn900368b

关键词

nanotechnology; photothermal therapy; DNA; hyperthermia; near-infrared

资金

  1. NIH-NCI [CA102532, 2P30 CA12197-25, T32 CA05964]
  2. North Carolina Biotechnology Center

向作者/读者索取更多资源

Nanoparticles, including multiwalled carbon nanotubes (MWNTs), strongly absorb near-infrared (nIR) radiation and efficiently convert absorbed energy to released heat which can be used for localized hyperthermia applications. We demonstrate for the first time that DNA-encasement increases heat emission following nIR irradiation of MWNTs, and DNA-encased MWNTs can be used to safely eradicate a tumor mass in vivo. Upon irradiation of DNA-encased MWNTs, heat is generated with a linear dependence on irradiation time and laser power. DNA-encasement resulted in a 3-fold reduction in the concentration of MWNTs required to impart a 10 degrees C temperature increase in bulk solution temperature. A single treatment consisting of intratumoral injection of MWNTs (100 mu L. of a 500 mu g/mL solution) followed by laser irradiation at 1064 nm, 2.5 W/cm(2) completely eradicated PC3 xenograft tumors in 8/8 (100%) of nude mice. Tumors that received only MWNT injection or laser irradiation showed growth rates indistinguishable from nontreated control tumors. Nonmalignant tissues displayed no long-term damage from treatment. The results demonstrate that DNA-encased MWNTs are more efficient at converting nIR irradiation into heat compared to nonencased MWNTs and that DNA-encased MWNTs can be used safely and effectively for the selective thermal ablation of malignant tissue in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据