4.8 Article

Logic Gates and Antisense DNA Devices Operating on a Translator Nucleic Acid Scaffold

期刊

ACS NANO
卷 3, 期 7, 页码 1831-1843

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn900085x

关键词

aptamer; DNAzyme; DNA; logic gate; thrombin; nanomedicine

资金

  1. EC
  2. Naval Research Laboratory, USA

向作者/读者索取更多资源

A series of logic gates, AND, OR, and XOR, are designed using a DNA scaffold that includes four footholds on which the logic operations are activated. Two of the footholds represent input-recognition strands, and these are blocked by complementary nucleic acids, whereas the other two footholds are blocked by nucleic acids that include the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The logic gates are activated by either nucleic acid inputs that hybridize to the respective footholds, or by low-molecular-weight inputs (adenosine monophosphate or cocaine) that yield the respective aptamer-substrate complexes. This results in the respective translocation of the blocking nucleic acids to the footholds carrying the HRP-mimicking DNAzyme sequence, and the concomitant release of the respective DNAzyme. The released product-strands then self-assemble into the hemin/G-quadruplex-HRP-mimicking DNAzyme that biocatalyzes the formation of a colored product and provides an output signal for the different logic gates. The principle of the logic operation is, then, implemented as a possible paradigm for future nanomedicine. The nucleic acid inputs that bind to the blocked footholds result in the translocation of the blocking nucleic acids to the respective footholds carrying the antithrombin aptamer. The released aptamer inhibits, then, the hydrolytic activity of thrombin. The system demonstrates the regulation of a biocatalytic reaction by a translator system activated on a DNA scaffold.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据