4.8 Article

Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate)

期刊

ACS NANO
卷 4, 期 1, 页码 513-523

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn9013577

关键词

segregated network; carbon nanotube; polymer thermoelectrics; PEDOT:PSS; conducting polymer; stabilizer

资金

  1. US Air Force Office of Scientific Research [FA9550-09-1-0609]
  2. National Science Foundation [CMMI 0644055]

向作者/读者索取更多资源

The thermoelectric properties of carbon nanotube (CNT)-filled polymer composites can be enhanced by modifying junctions between CNTs using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), yielding high electrical conductivities (up to similar to 40000 S/m) without significantly altering thermopower (or Seebeck coefficient). This is because PEDOT:PSS particles are decorated on the surface of CNTs, electrically connecting junctions between CNTs. On the other hand, thermal transport remains comparable to typical polymeric materials due to the dissimilar bonding and vibrational spectra between CNT and PEDOT:PSS. This behavior is very different from that of typical semiconductors whose thermoelectric properties are strongly correlated. The decoupled thermoelectric properties, which is ideal for developing better thermoelectric materials, are believed to be due to thermally disconnected. and electrically connected contact junctions between CNTs. Carrier transport at the junction is found to be strongly dependent on the type and concentration of stabilizers. The crucial role of stabilizers was revealed by characterizing transport characteristics of composites synthesized by electrically conducting PEDOT:PSS and insulating gum Arabic (GA) with 1:1-1:4 weight ratios of CNT to stabilizers, The influence of composite synthesis temperature and CNT-type and concentration on thermoelectric properties has also been studied. Single-walled (SW) CNT-filled composites dried at room temperature followed by 80 degrees C exhibited the best thermoelectric performance in this study. The highest thermoelectric figure of merit (ZT) in this study is estimated to be similar to 0.02 at room temperature, which is at least one order of magnitude higher than most polymers and higher than that of bulk Si. Further studies with various polymers and nanoparticles with high thermoelectric performance may result in economical, lightweight, and efficient polymer thermoelectric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据