4.8 Article

Graphene Oxide as an Ideal Substrate for Hydrogen Storage

期刊

ACS NANO
卷 3, 期 10, 页码 2995-3000

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn900667s

关键词

graphene oxide; titanium anchoring; hydrogenation; hydrogen storage; first-principles computations

资金

  1. DOE/OS/BES
  2. DOE/EERE [DE-AC36-08GO28308]
  3. RPI [J30546/J90336]
  4. DOE BES/CMSN
  5. NSF [CHE-0716718, 0701525]
  6. New Century Excellent Talents in University of China [NCET06-0281]
  7. National Natural Science Foundation of China [10774019]

向作者/读者索取更多资源

Organometallic nanomaterials hold the promise for molecular hydrogen (H-2) Storage by providing nearly ideal binding strength to H-2 for room-temperature applications. Synthesizing such materials, however, faces severe setbacks due to the problem of metal clustering. Inspired by a recent experimental breakthrough (J. Am. Chem. Soc. 2008, 130, 6992), which demonstrates enhanced H-2 binding in Ti-grafted mesoporous silica, we propose combining the graphene oxide (GO) technique with Ti anchoring to overcome the current synthesis bottleneck for practical storage materials. Similar to silica, 60 contains ample hydroxyl groups, which are the active sites for anchoring Ti atoms. GO can be routinely synthesized and is much lighter than silica. Hence, higher gravimetric storage-capacity can be readily Achieved. Our first-principles computations suggest that GO is primarily made of low-energy oxygen-containing structural motifs on the graphene sheet. The Ti atoms bind strongly to the oxygen sites with binding energies as high as 450 kJ/mol. This is comparable to that of silica and is indeed enough to prevent the Ti atoms from clustering. Each Ti can bind multiple H-2 with the desired binding energies (14-41 kJ/mol-H-2). The estimated theoretical gravimetric and volumetric densities are 4.9 wt % and 64 g/L, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据