4.8 Article

Mapping nanostructure:: A systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions

期刊

ACS NANO
卷 2, 期 6, 页码 1237-1251

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn800065g

关键词

molecular dynamics; nanobuilding blocks; crystallography; mesostructure; oxide; atomistic model; nanostructure; X-ray diffraction; electron microscopy

资金

  1. Engineering and Physical Sciences Research Council [GR/S48431/01] Funding Source: researchfish

向作者/读者索取更多资源

Nanomaterials synthesized from nanobuilding blocks promise size-dependent properties, associated with individual nanoparticles, together with collective properties of ordered arrays. However, one cannot position nanoparticles at specific locations; rather innovative ways of coaxing these particles to self-assemble must be devised. Conversely, model nanoparticles can be placed in any desired position, which enables a systematic enumeration of ramostructure from model nanobuilding blocks. This is desirable because a list of chemically feasible hypothetical structures will help guide the design of strategies leading to their synthesis. Moreover, the models can help characterize nanostructure, calculate (predict) properties, or simulate processes. Here, we start to formulate and use a simulation strategy to generate atomistic models of nanomaterials, which can, potentially, be synthesized from nanobuilding block precursors. Clearly, this represents a formidable task because the number of ways nanoparticles can be arranged into a superlattice is infinite. Nevertheless, numerical tools are available to help build nanoparticle arrays in a systematic way. Here, we exploit the rules of crystallography and position nanoparticles, rather than atoms, at crystallographic sites. Specifically, we explore nanoparticle arrays with cubic, tetragonal, and hexagonal symmetries together with primitive, face centered cubic and body centered cubic nanoparticle packing. We also explore binary nanoparticle superlattices. The resulting nanomaterials, spanning CeO2, Ti-doped CeO2, ZnO, ZnS, MgO, CaO, SrO, and BaO, comprise framework architectures, with cavities interconnected by channels traversing (zero), one, two and three dimensions. The final, fully atomistic models comprise three hierarchical levels of structural complexity: crystal structure, microstructure (i.e., grain boundaries, dislocations), and superlattice structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据