4.8 Article

Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum

期刊

ACS NANO
卷 2, 期 6, 页码 1296-1304

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn800114q

关键词

cell culture; diatoms; germanium; nanocomb; photoluminescence; silica

向作者/读者索取更多资源

Diatoms are single-celled algae that make microscale silica shells or frustules with intricate nanoscale features such as two-dimensional pore arrays. In this study, the metabolic insertion of low levels of germanium into the frustule biosilica of the pennate diatom Nitzschia frustulum by a two-stage cultivation process induced the formation of frustules which strongly resembled double-sided nanocomb structures. The final product from the two-stage cultivation process contained 0.41 wt % Ge in biosilica and consisted of an equal mixture of parent frustule valves possessing a normal two-dimensional array of 200 nm pores and daughter valves possessing the nanocomb structure. The nanocomb structures had overall length of 8 mu m, rib width of 200 nm, rib length of 500 nm, and slit width of 100 nm. Each slit of the nanocomb was most likely formed by a directed morphology change of a row of 200 nm pores to a single open slit following Ge incorporation into the developing frustule during the final cell division. The frustules possessed blue photoluminescence at peak wavelengths between 450 and 480 nm, which was attributed to contributions from nanostructured biosilica in both the parent valves and in the nanocomb daughter valves. This is the first reported study of using a cell culture system to biologically fabricate a photoluminescent nanocomb structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据