4.8 Article

First-principles study of a carbon nanobud

期刊

ACS NANO
卷 2, 期 7, 页码 1459-1465

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn800256d

关键词

carbon nanobud C-60 buckyball; single-walled carbon nanotube; cycloaddition reaction; field emission

向作者/读者索取更多资源

Carbon nanobuds (CNBs), a novel carbon nanostructure, have been synthesized recently via covalently bonding C-60 buckyballs to the sidewall of a single-walled carbon nanotube (SWCNT) through cycloaddition reaction [Nasibulin, A. G. et al., Nat. Nanotechnol. 2007, 2, 156]. We perform a first-principles study of structural, electronic, chemical, and field-emission properties of CNBs. It is found that relative stabilities of CNBs depend on the type of carbon-carbon bond dissociated in the cycloaddition reaction. All CNBs are semiconducting regardless of the original SWCNT base being metallic or semiconducting. Chemical attachment of C-60 to SWCNTs can either open up the band gap (e.g., for armchair SWCNT) or introduce impurity states within the band gap, thereby reducing the band gap (for semiconducting SWCNT). In addition, the band gap of CNBs can be modified by changing the density of C-60 attached to the sidewall of the SWCNT. The work function of CNBs can be either slightly higher or lower than that of the parent SWCNT, depending on whether the attached SWCNT is armchair or zigzag. Computed reaction pathway for the formation of CNBs shows that the barriers of both forward and backward reactions are quite high, confirming that CNBs are very stable at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据