4.6 Article

The Tachykinin Peptide Neurokinin B Binds Copper Forming an Unusual [CuII(NKB)2] Complex and Inhibits Copper Uptake into 1321N1 Astrocytoma Cells

期刊

ACS CHEMICAL NEUROSCIENCE
卷 4, 期 10, 页码 1371-1381

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cn4000988

关键词

Neurokinin B; tachykinin; copper; calcium; neurodegeneration; substance P; Fura2; EPR

资金

  1. UWS

向作者/读者索取更多资源

Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides that have neuroinflammatory, neuroimmunological, and neuroprotective functions. In a neuroprotective role, tachykinins can help protect cells against the neurotoxic processes observed in Alzheimer's disease. A change in copper homeostasis is a clear feature of Alzheimer's disease, and the dysregulation may be a contributory factor in toxicity. Copper has recently been shown to interact with neurokinin A and neuropeptide gamma and can lead to generation of reactive oxygen species and peptide degradation, which suggests that copper may have a place in tachykinin function and potentially misfunction. To explore this, we have utilized a range of spectroscopic techniques to show that NKB, but not substance P, can bind Cu-II in an unusual [Cu-II(NKB)(2)] neutral complex that utilizes two N-terminal amine and two imidazole nitrogen ligands (from each molecule of NKB) and the binding substantially alters the structure of the peptide. Using 1321N1 astrocytoma cells, we show that copper can enter the cells and subsequently open plasma membrane calcium channels but when bound to neurokinin B copper ion uptake is inhibited. This data suggests a novel role for neurokinin B in protecting cells against copper-induced calcium changes and implicates the peptide in synaptic copper homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据