4.6 Article

Quasithermodynamic Contributions to the Fluctuations of a Protein Nanopore

期刊

ACS CHEMICAL BIOLOGY
卷 10, 期 3, 页码 784-794

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cb5008025

关键词

-

资金

  1. National Institutes of Health [R01 GM088403, R01 GM085785]

向作者/读者索取更多资源

Proteins undergo thermally activated conformational fluctuations among two or more substates, but a quantitative inquiry on their kinetics is persistently challenged by numerous factors, including the complexity and dynamics of various interactions, along with the inability to detect functional substates within a resolvable time scale. Here, we analyzed in detail the current fluctuations of a monomeric beta-barrel protein nanopore of known high-resolution X-ray crystal structure. We demonstrated that targeted perturbations of the protein nanopore system, in the form of loop-deletion mutagenesis, accompanying alterations of electrostatic interactions between long extracellular loops, produced modest changes of the differential activation free energies calculated at 25 degrees C, Delta Delta G double dagger, in the range near the thermal energy but substantial and correlated modifications of the differential activation enthalpies, Delta Delta H double dagger, and entropies, Delta Delta S double dagger. This finding indicates that the local conformational reorganizations of the packing and flexibility of the fluctuating loops lining the central constriction of this protein nanopore were supplemented by changes in the single-channel kinetics. These changes were reflected in the enthalpy-entropy reconversions of the interactions between the loop partners with a compensating temperature, TC, of similar to 300 K, and an activation free energy constant of similar to 41 kJ/mol. We also determined that temperature has a much greater effect on the energetics of the equilibrium gating fluctuations of a protein nanopore than other environmental parameters, such as the ionic strength of the aqueous phase as well as the applied transmembrane potential, likely due to ample changes in the solvation activation enthalpies. There is no fundamental limitation for applying this approach to other complex, multistate membrane protein systems. Therefore, this methodology has major implications in the area of membrane protein design and dynamics, primarily by revealing a better quantitative assessment on the equilibrium transitions among multiple well-defined and functionally distinct substates of protein channels and pores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据