4.8 Article

Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 Cathode Material with Suppressed P2-O2 Phase Transition toward High-Performance Sodium-Ion Battery

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 40, 页码 34272-34282

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b12204

关键词

sodium-ion battery; iron substitution; high performance cathode; low-temperature performance; full cell

资金

  1. National Natural Science Foundation of China [21573036, 21274017]
  2. Foundation of the Education Department of Jilin Province [111099108]
  3. Jilin Provincial Research Center of Advanced Energy Materials (Northeast Normal University)

向作者/读者索取更多资源

As a promising cathode material of sodium-ion battery, P2-type Na2/3Ni1/3Mn2/3O2 (NNMO) possesses a theoretically high capacity and working voltage to realize high energy storage density. However, it still suffers from poor cycling stability mainly incurred by the undesirable P2-O2 phase transition. Herein, the electrochemically active Fe3+ ions are introduced into the lattice of NNMO, forming Na2/3Ni1/3Mn2/3-xFexO2 (x = 0, 1/24, 1/12, 1/8, 1/6) to effectively stabilize the P2-type crystalline structure. In such Fe-substituted materials, both Ni2+/Ni4+ and Fe3+/Fe4+ couples take part in the redox reactions, and the P2-O2 phase transition is well restrained during cycling, as verified by ex situ X-ray diffraction. As a result, the optimized Na2/3Ni1/3Mn7/12Fe1/12O2 (1/12-NNMF) has a long-term cycling stability with the fading rate of 0.05% per cycle over 300 cycles at 5 C. Furthermore, the 1/12-NNMF delivers excellent rate capabilities (65 mA h g(-1) at 25 C) and superior low-temperature performance (the capacity retention of 94% at -25 degrees C after 80 cycles) owing to the enhanced Na diffusion upon Fe doping, which is deduced by the studies of electrode kinetics. More significantly, the 1/12-NNMF also displays remarkable sodium-ion full-cell properties when merged with an LS-Sb@G anode, thus implying the possibility of their practical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据