4.8 Article

Highly Advanced Degradation of Thiamethoxam by Synergistic Chemisorption-Catalysis Strategy Using MIL(Fe)/Fe-SPC Composites with Ultrasonic Irradiation

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 41, 页码 35260-35272

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b12908

关键词

MIL(Fe)/Fe-SPC catalyst; efficient charge separation; thiamethoxam advanced degradation; DFT simulation; synergistic chemisorption-catalysis strategy

资金

  1. National Natural Science Foundation of China [21666004, 21676059]
  2. Natural Science Foundation of Guangxi Zhuang Autonomous Region, China [2016GXNSFAA380229, 2017GXNSFFA198009, 2017GXNSFEA198001]
  3. Scientific Research Foundation of Guangxi University [XJPZ160713]
  4. Guangxi Distinguished Experts Special Foundation of China

向作者/读者索取更多资源

MIL(Fe)/Fe-doped nanospongy porous biocarbon (Fe-SPC) composite was fabricated from MIL-100(Fe) via in situ growth on a unique Fe-doped nanospongy porous biocarbon (Fe-SPC) and was used as Fenton-like catalyst for advanced degradation of thiamethoxam (THIA). Fe was loaded on silkworm excrement and calcined to Fe-SPC with nanospongy and high sp(2) C structure. The in situ growth strategy embedded the Fe-SPC into MIL-100(Fe) crystals and formed conductive heterojunctions with an intensified interface by Fe-bridging effect, which was confirmed by negative shift of Fe3+ binding energy in X-ray photoelectron spectroscopy. MIL(Fe)/Fe-SPC composites exhibited high degree of crystallinity and surface area (Brunauer-Emmett-Teller: 1730 m(2)/g). Liquid chromatography-mass spectrometry and density functional theory simulations demonstrated that THIA was converted to a relatively stable compound (C4H5N2SCl), which could be captured by MIL-100(Fe) with strong chemical bonding energy (Fe-N, -587 kJ/mol), followed by a significant geometric distortion, resulting in a thorough degradation. Efficient charge separation and synergistic chemisorption-catalysis strategy resulted in the high catalytic activity of MIL(Fe)Fe-SPC. The composite catalyst concurrently exhibited high mineralization ratio with 95.4% total organic carbon removal (at 25 degrees C and 180 min) and good recycling ability under wider neutral/alkaline conditions. Endorsing to these intriguing properties, MIL(Fe)/Fe-SPC can be deemed an efficient contender for removal of hard-degradable pesticides and other environmental pollutants in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据