4.8 Article

Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 39, 页码 33684-33692

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b12471

关键词

plastron; drag reduction; hydrogen peroxide; catalysis; superhydrophobic; regeneration; self-recovery

资金

  1. KFUPM (King Fahd University of Petroleum and Minerals)
  2. Office of Naval Research (ONR)

向作者/读者索取更多资源

Superhydrophobic surfaces submerged under water appear shiny due to total internal reflection of light from a thin layer of air (plastron) trapped in their surface texture. This entrapped air is advantageous for frictional drag reduction in various applications ranging from microfluidic channels to marine vessels. However, these aerophilic textures are prone to impregnation by water due to turbulent pressure fluctuations from external flows and dissolution of the trapped gas into the water. We demonstrate a novel chemical method to replenish the plastron in situ by using the decomposition reaction of hydrogen peroxide on superhydrophobic surfaces prepared with a catalytic coating. We also provide a thermodynamic framework for designing superhydrophobic surfaces with optimal texture and chemistry for underwater plastron regeneration. We finally demonstrate the practical utility of this method by fabricating periodic microtextures on aluminum surfaces that incorporate a cheap catalyst, manganese dioxide. We perform drag-reduction experiments under turbulent flow conditions in a Taylor-Couette cell (TC cell), which show that more than half of the drag increase ensuing from plastron collapse can be recovered spontaneously by injection of dilute H2O2 into the TC cell. Thus, we present a low-cost, scalable method to enable in situ plastron regeneration on large surfaces for marine applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据