4.8 Article

Design of an Amphiphilic iRGD Peptide and Self-Assembling Nanovesicles for Improving Tumor Accumulation and Penetration and the Photodynamic Efficacy of the Photosensitizer

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 37, 页码 31674-31685

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b11699

关键词

iRGD; peptide amphiphiles; self-assembly; tumor targeting and penetration; fluorescence imaging; photodynamic therapy

资金

  1. general grant fund from the Hong Kong Research Grant Committee [476912]
  2. Health and Medical Research Fund [13120442]

向作者/读者索取更多资源

Photodynamic therapy (PDT) is a minimally invasive treatment for many diseases, including infections and tumors. Nevertheless, clinical utilization of PDT is severely restricted due to the shortcomings of the photosensitizers, especially their low water solubility and poor tumor selectivity. iRGD (internalizing RGD, CRGDKGPDC), a nine-unit cyclic peptide, was applied as an active ligand to realize tumor homing and tissue penetration. Herein, we innovatively fabricated a novel OFF-ON mode iRGD-based peptide amphiphile (PA) to self-assemble into spherical nanovesicles to enhance the tumor-targeting and tumor-penetrating efficacy of PDT. To introduce the self-assembling feature into iRGD, a hydrophilic arginine-rich sequence and hydrophobic alkyl chains were sequentially linked to the iRGD motif. A short proline sequence was selected to control the morphology of the self-assembled aggregates. Next, the photosensitizer hypocrellin B (HB) was encapsulated into PA vesicles with a high loading efficiency. The aggregation-caused quenching effect inactivated HB in the PA vesicles; however, the iRGD-peptide-based material was able to be selectively degraded in tumor cells. Thus, the HB fluorescence was recovered to achieve tumor-targeted imaging. This approach endows HB-loaded PA vesicles (HB-PA) with tumor-targeted activation, preferable tumor accumulation, and deep tumor penetration, thus leading to an excellent fluorescence-imaging-guided photodynamic efficacy both in vitro and in vivo. These amphiphilic iRGD aggregates provide a novel strategy for improving the accumulation, penetration, and imaging-guided photodynamic efficacy of photosensitizers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据